Leetcode.33 搜索旋转排序数组

整数数组 nums 按升序排列,数组中的值 互不相同 。

在传递给函数之前,nums 在预先未知的某个下标 k0 <= k < nums.length)上进行了 旋转,使数组变为 [nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]](下标 从 0 开始 计数)。例如, [0,1,2,4,5,6,7] 在下标 3 处经旋转后可能变为 [4,5,6,7,0,1,2] 。

给你 旋转后 的数组 nums 和一个整数 target ,如果 nums 中存在这个目标值 target ,则返回它的下标,否则返回 -1 。

你必须设计一个时间复杂度为 O(log n) 的算法解决此问题。

示例 1:

输入:nums = [`4,5,6,7,0,1,2]`, target = 0
输出:4

示例 2:

输入:nums = [`4,5,6,7,0,1,2]`, target = 3
输出:-1

示例 3:

输入:nums = [1], target = 0
输出:-1

提示:

  • 1 <= nums.length <= 5000
  • -104 <= nums[i] <= 104
  • nums 中的每个值都 独一无二
  • 题目数据保证 nums 在预先未知的某个下标上进行了旋转
  • -104 <= target <= 104

二分查找嗷

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
func search(nums []int, target int) int {
if len(nums) == 1 {
if nums[0] != target {
return -1
} else {
return 0
}
}
l, r := 0, len(nums)-1

for l<=r {
mid := (r + l)/2
if nums[mid] == target {
return mid
}
// 左侧递增
if nums[0] <= nums[mid] {
// 落在左,从左侧找
if nums[0] <= target && target < nums[mid] {
r = mid-1
// mid 左侧非递增,尝试从右边找
} else {
l = mid+1
}
} else {
// 落在右区间内,从右侧找
if nums[mid] < target && target <= nums[len(nums)-1] {
l = mid+1
} else {
r = mid-1
}
}
}
return -1
}

思路和算法

对于有序数组,可以使用二分查找的方法查找元素。

但是这道题中,数组本身不是有序的,进行旋转后只保证了数组的局部是有序的,这还能进行二分查找吗?答案是可以的。

可以发现的是,我们将数组从中间分开成左右两部分的时候,一定有一部分的数组是有序的。拿示例来看,我们从 6 这个位置分开以后数组变成了 [4, 5, 6] 和 [7, 0, 1, 2] 两个部分,其中左边 [4, 5, 6] 这个部分的数组是有序的,其他也是如此。

这启示我们可以在常规二分查找的时候查看当前 mid 为分割位置分割出来的两个部分 [l, mid] 和 [mid + 1, r] 哪个部分是有序的,并根据有序的那个部分确定我们该如何改变二分查找的上下界,因为我们能够根据有序的那部分判断出 target 在不在这个部分:

如果 [l, mid - 1] 是有序数组,且 target 的大小满足 [nums[l],nums[mid])[\textit{nums}[l],\textit{nums}[mid])[nums[l],nums[mid]),则我们应该将搜索范围缩小至 [l, mid - 1],否则在 [mid + 1, r] 中寻找。
如果 [mid, r] 是有序数组,且 target 的大小满足 (nums[mid+1],nums[r]](\textit{nums}[mid+1],\textit{nums}[r]](nums[mid+1],nums[r]],则我们应该将搜索范围缩小至 [mid + 1, r],否则在 [l, mid - 1] 中寻找。