Leetcode53. 最大子数组和
给你一个整数数组 nums
,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
子数组
是数组中的一个连续部分。
示例 1:
输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。
示例 2:
输入:nums = [1]
输出:1
示例 3:
输入:nums = [5,4,-1,7,8]
输出:23
提示:
1 <= nums.length <= 105
-104 <= nums[i] <= 104
思路和算法
假设 nums 数组的长度是 n,下标从 0 到 n−1。
我们用 f(i) 代表以第 i 个数结尾的「连续子数组的最大和」,那么很显然我们要求的答案就是:
$$max0≤i≤n−1{f(i)}$$
因此我们只需要求出每个位置的 f(i),然后返回 f 数组中的最大值即可。那么我们如何求 f(i) 呢?我们可以考虑 nums[i] 单独成为一段还是加入 f(i−1) 对应的那一段,这取决于 nums[i] 和 f(i−1)+nums[i] 的大小,我们希望获得一个比较大的,于是可以写出这样的动态规划转移方程:
$$f(i)=max{f(i−1)+nums[i],nums[i]}$$
不难给出一个时间复杂度 O(n)、空间复杂度 O(n) 的实现,即用一个 f 数组来保存 f(i) 的值,用一个循环求出所有 f(i)。考虑到 f(i) 只和 f(i−1) 相关,于是我们可以只用一个变量 pre 来维护对于当前 f(i) 的 f(i−1) 的值是多少,从而让空间复杂度降低到 O(1),这有点类似「滚动数组」的思想。
1 | func maxSubArray(nums []int) int { |
简单来说就是看前一个元素是否大于 0 ,如果符合条件,那么就加到当前位置上
另一种方法是前缀和,找到每个位置的前缀和,那么某两个前缀和的最大差值就是我们要找的 子数组 区间和最大值
1 | func maxSubArray(nums []int) int { |
本博客所有文章除特别声明外,均采用 CC BY-NC-SA 4.0 许可协议。转载请注明来自 Bishop!
评论
GitalkValine